Pontrjagin duality on multiplicative gerbes

Bernardo Uribe Jongbloed

Universidad del Norte, Barranquilla
Max Planck Institut für Mathematik, Bonn

Mathematics Colloquium, Hamburg
May 11th 2021

Acknowledgments

Collaborators

- Kevin Maya and Alvaro Muñoz (Master students)
- Jaider Blanco (Ph.D. student)
- Adriana Mejía (Colleague at Uninorte)
- Konrad Waldorf (Colleague at Greifswald)

Institutions

- Alexander Von Humboldt Stiftung (Institutpartnerschaft Greifswald-Uninorte-UNALMED)
- Max Planck Institut für Mathematik

Contents

- The finite group case
- Twisted Drinfeld Double
- Pointed fusion categories
- Morita equivalence
- The topological group case
- Segal-Mitchison multiplicative gerbes
- Representation of SM multiplicative gerbes
- Pontrjagin dual multiplicative gerbes
- Center of multiplicative SM gerbes
- Conclusions

Quantum groups

They could be thought as "deformations" of classical groups.
They should be taken as the
"Symmetry groups"

Include: Hopf algebras and their generalizations.

Yang-Baxter equation

Condition for integrability of 1D and 2D quantum systems.
Quantum integrable group \rightarrow Q Quasi-triangular Hopf Algebra

Drinfeld Double

H finite dimensional Hopf \mathbb{C}-algebra.
$H^{*}=\operatorname{Hom}_{\mathbb{C}}(\mathrm{H}, \mathbb{C})$, dual Hopf algebra.
$D(H):=H \otimes H^{*}$ (Drinfeld Double)
The image of the identity map

$$
\operatorname{Hom}_{\mathbb{C}}(\mathrm{H}, \mathrm{H}) \cong \mathrm{H}^{*} \otimes \mathrm{H}
$$

provides an R-matrix that satisfies the Yang-Baxter equation. If $\left\{v_{i}\right\}_{i \in 1}$ is a basis for H, and $\left\{v^{i}\right\}_{i \in 1}$ is the dual basis for H^{*} :

$$
R=\sum_{i \in I}\left(1 \otimes v^{i}\right) \otimes\left(v_{i} \otimes 1\right) \in \operatorname{End}(\mathrm{D}(\mathrm{H}) \otimes \mathrm{D}(\mathrm{H}))
$$

Drinfeld Double of finite group $D(G)$
$D(G)=\mathbb{C} G \otimes \mathbb{C}^{G} . \quad$ Base: $\left\{g \otimes \delta_{x} \mid(g, x) \in G\right\}$.

$$
\begin{gathered}
\left(g \otimes \delta_{x}\right)\left(h \otimes \delta_{y}\right)=\delta_{x, h y h^{-1}}\left(g h \otimes \delta_{y}\right), \quad 1=\sum_{g \in G} 1 \otimes \delta_{x} \\
\Delta\left(g \otimes \delta_{x}\right)=\sum_{a b=x}\left(g \otimes \delta_{a}\right) \otimes\left(g \otimes \delta_{b}\right), \quad \epsilon\left(g \otimes \delta_{x}\right)=\delta_{x, 1} \\
S\left(g \otimes \delta_{x}\right)=g^{-1} \otimes \delta_{g^{-1} x^{-1} g} \\
R=\sum_{x, y \in G}\left(1 \otimes \delta_{x}\right) \otimes\left(x \otimes \delta_{y}\right)
\end{gathered}
$$

Twisted Drinfeld Double of finite group $D^{\omega}(G)$

 $\omega \in Z^{3}(G, U(1))$ normalized cocycle. Define:$$
\begin{aligned}
& \beta_{x}(g, h)=\frac{\omega(g, h, x) \omega\left(g h x h^{-1} g^{-1}, g, h\right)}{\omega\left(g, h x h^{-1}, h\right)} \\
& \mu_{g}(x, y)=\frac{\omega\left(g x g^{-1}, g^{g} g^{-1}, g\right) \omega(g, x, y)}{\omega\left(g x g^{-1}, g, y\right)}
\end{aligned}
$$

$$
\begin{aligned}
\left(g \otimes \delta_{x}\right)\left(h \otimes \delta_{y}\right)=\delta_{x, h y h^{-1}} \beta_{y}(g, h)\left(g h \otimes \delta_{y}\right), & 1=\sum_{g \in G} e \otimes \delta_{x} \\
\Delta\left(g \otimes \delta_{x}\right)=\sum_{a b=x} \mu_{g}(a, b)\left(g \otimes \delta_{a}\right) \otimes\left(g \otimes \delta_{b}\right), & \epsilon\left(g \otimes \delta_{x}\right)=\delta_{x, 1}
\end{aligned}
$$

Twisted Drinfeld Double of finite group $D^{\omega}(G)$

$$
\begin{gathered}
S\left(g \otimes \delta_{x}\right)=\frac{1}{\beta_{x^{-1}}\left(g^{-1}, g\right) \mu_{g}\left(x, x^{-1}\right)}\left(g^{-1} \otimes \delta_{g^{-1} x^{-1} g}\right) \\
R=\sum_{x, y \in G}\left(1 \otimes \delta_{x}\right) \otimes\left(x \otimes \delta_{y}\right) \\
\Phi=\sum_{x, y, z \in G} \omega(x, y, z)^{-1}\left(1 \otimes \delta_{x}\right) \otimes\left(1 \otimes \delta_{y}\right) \otimes\left(1 \otimes \delta_{z}\right)
\end{gathered}
$$

Note: (ω, β, μ) define a cocycle in $Z^{3}(G \ltimes G, U(1))$ via the pullback of the multiplication map

$$
G \ltimes G \rightarrow G, \quad(g, x) \mapsto g x
$$

Representations of $D^{\omega}(G)$

Category of representations $\operatorname{Rep}\left(D^{\omega}(G)\right)$ of the Twisted Drinfeld Double $D^{\omega}(G)$ becomes a Modular Tensor Category.

Modular Tensor Category: non-degenerate braided fusion category with a choice of spherical structure.

Extended Chern-Simons Field theory (Reshetikhin-Turaev, Freed):

$$
\begin{aligned}
F: \operatorname{Bord}_{\langle 3,2,1\rangle} & \rightarrow \operatorname{Cat}_{\mathbb{C}} \\
F\left(S^{1}\right) & \mapsto \operatorname{Rep}\left(D^{\omega}(G)\right)
\end{aligned}
$$

Twisted equivariant K-theory

The isomorphism classes of representations

$$
\pi_{0}\left(\operatorname{Rep}\left(D^{\omega}(G)\right)\right)
$$

could be interpreted as the G-Twisted equivariant K-theory groups of G (Freed-Hopkins-Teleman, Willerton,...)

$$
\tau(\omega) K_{G}(G) \cong \bigoplus_{(x) \in \operatorname{Conj}(G)} \beta_{x} R\left(C_{G}(x)\right)
$$

with "pull-push" product structure.

Pointed fusion category $\operatorname{Vec}^{\omega}(\mathrm{G})$

The finite tensor category $\operatorname{Vec}^{\omega}(\mathrm{G})$ is a pointed fusion category, i.e. all its simple objects are invertible.

Objects: G-graded vector spaces $V=\oplus_{g \in G} V_{g}$.
Monoidal structure: $(V \otimes W)_{k}=\bigoplus_{h g=k} V_{h} \otimes W_{g}$.
Associativity constraint: $\left(V_{h} \otimes W_{g}\right) \otimes Z_{k} \xrightarrow{\omega\left(h, g_{i}\right)} V_{h} \otimes\left(W_{g} \otimes Z_{k}\right)$

2-Category of module categories over $\operatorname{Vec}^{\omega}(\mathrm{G})$

A module category \mathcal{M} over the tensor category \mathcal{C} consist of a functor

$$
\mathcal{M} \otimes \mathcal{C} \rightarrow \mathcal{M}
$$

and functorial associativity

$$
\mu_{M, X, Y}: M \otimes(X \otimes Y) \xrightarrow{\sim}(M \otimes X) \otimes Y
$$

satisfying the pentagon axiom, + more structures.
Idecomposable modules: $\mathcal{M}(\boldsymbol{A} \backslash \boldsymbol{G}, \mu)$ with $\delta_{G} \mu=\pi^{*} \omega$.

Dual category of $\mathcal{C}=\operatorname{Vec}^{\omega}(\mathrm{G})$

For \mathcal{M} an idecomposable module category over $\operatorname{Vec}^{\omega}(\mathrm{G})$, the dual category is:

$$
\mathcal{C}_{\mathcal{M}}^{*}=\operatorname{End}_{\mathcal{C}}(\mathcal{M})
$$

For \mathcal{C} and \mathcal{M} semisimple, $\mathcal{C}_{\mathcal{M}}^{*}$ is semisimple and

$$
\left(\mathcal{C}_{\mathcal{M}}^{*}\right)_{\mathcal{M}}^{*} \cong \mathcal{C}
$$

(Drinfeld) Center of monoidal category

Consider \mathcal{C} as a module category over $\mathcal{C} \otimes \mathcal{C}^{o p}$. The center of \mathcal{C} is:

$$
\mathcal{Z}(\mathcal{C})=\operatorname{End}_{\mathcal{C} \otimes \mathcal{C}^{\operatorname{cop}}}(\mathcal{C})
$$

For \mathcal{C} a fusion category, its center becomes a Braided Fusion Category. Moreover,

$$
\mathcal{Z}\left(\operatorname{Vec}^{\omega}(\mathrm{G})\right) \cong \operatorname{Rep}\left(\mathrm{D}^{\omega}(\mathrm{G})\right)
$$

as Braided Fusion Categories.

Morita equivalence

Two fusion categories \mathcal{C} and \mathcal{D} are called Morita equivalent if there exists an idecomposable module category over \mathcal{C} such that

$$
\mathcal{C}_{\mathcal{M}}^{*} \cong \mathcal{D}
$$

Morita equivalent fusion categories \mathcal{C} and \mathcal{D} have equivalent categories of module categories. Moreover

$$
\mathcal{Z}(\mathcal{C}) \cong \mathcal{Z}(\mathcal{D})
$$

Theorem (Etingof-Nikshish-Ostrik)
Fusion categories \mathcal{C} and \mathcal{D} are Morita equivalent if and only if $\mathcal{Z}(\mathcal{C})$ and $\mathcal{Z}(\mathcal{D})$ are equivalent as Braided Fusion Categories.

Since $\operatorname{Rep}\left(D^{\omega}(G)\right) \cong \mathcal{Z}\left(\operatorname{Vec}^{\omega}(G)\right)$

Therefore:

$$
\operatorname{Vec}^{\omega}(\mathrm{G}) \simeq_{\text {Morita }} \operatorname{Vec}^{\widetilde{\omega}}(\widetilde{\mathrm{G}}) \leftrightarrow \operatorname{Rep}\left(\mathrm{D}^{\omega}(\mathrm{G})\right) \cong \operatorname{Rep}\left(\mathrm{D}^{\widetilde{\omega}}(\widetilde{\mathrm{G}})\right)
$$

Morita equivalent pointed fusion categories determine equivalent Chern Simons Extended Field theories.

So, when are $\operatorname{Vec}^{\omega}(\mathrm{G})$ and $\operatorname{Vec}^{\widehat{\omega}}(\widehat{\mathrm{G}})$ Morita equivalent?

$\operatorname{Vec}^{\omega}(\mathrm{G}) \simeq_{\text {Morita }} \operatorname{Vec}^{\widehat{\omega}}(\widehat{\mathrm{G}})$

Theorem [Uribe 2016]:

$\operatorname{Vec}^{\omega}(\mathrm{G})$ and $\operatorname{Vec}^{\widehat{\omega}}(\widehat{\mathrm{G}})$ are Morita equivalent, if and only if: $\phi: G \cong A \rtimes_{F} K$ with A abelian and $F \in Z^{2}(K, A)$.

- $\widehat{\phi}: \widehat{G} \cong K \ltimes_{\widehat{F}} \widehat{A}$ with $\widehat{A}=\operatorname{Hom}(\mathrm{A}, \mathrm{U}(1))$ and $\widehat{F} \in Z^{2}(K, \widehat{A})$.
- There exists $\epsilon: K^{3} \rightarrow U(1)$ such that $\delta_{K} \epsilon=\widehat{F} \wedge F$
$-\left[\phi^{*} \eta\right]=[\omega]$ and $\left[\hat{\phi}^{*} \widehat{\eta}\right]=[\widehat{\omega}]$ with

$$
\begin{aligned}
& \eta\left(\left(a_{1}, k_{1}\right),\left(a_{2}, k_{2}\right),\left(a_{3}, k_{3}\right)\right):=\widehat{F}\left(k_{1}, k_{2}\right)\left(a_{3}\right) \epsilon\left(k_{1}, k_{2}, k_{3}\right) \\
& \widehat{\eta}\left(\left(k_{1}, \rho_{1}\right),\left(k_{2}, \rho_{2}\right),\left(k_{3}, \rho_{3}\right)\right)::=\epsilon\left(k_{1}, k_{2}, k_{3}\right) \rho_{1}\left(F\left(k_{2}, k_{3}\right)\right)
\end{aligned}
$$

Reminiscent of T-duality

$\operatorname{Vec}^{\omega}(\mathrm{G}) \quad \operatorname{Vec}^{\widehat{\omega}}(\widehat{\mathrm{G}})$

Morita equivalence classes for $|G|=4$

$\mathbb{Z} / 2 \times \mathbb{Z} / 2$	$\mathbb{Z} / 4$
$\{0\}$	
orb $\left(x^{4}\right)$	
orb $\left(x^{4}+x^{2} y^{2}+y^{4}\right)$	
orb $\left(x^{2} y^{2}\right)$	$\{0\}$
	$\left\{u^{2}\right\}$
	$\left\{2 u^{2}\right\}$
	$\left\{3 u^{2}\right\}$

$\operatorname{Vec}^{x^{2} y^{2}}(\mathbb{Z} / 2 \times \mathbb{Z} / 2) \simeq_{\text {Morita }} \operatorname{Vec}(\mathbb{Z} / 4)$

Morita equivalence classes for $|G|=8$

 Together with student Munõz.| $(\mathbb{Z} / \mathbf{2})^{3}$ | $\mathbb{Z} / \mathbf{4} \times \mathbb{Z} / \mathbf{2}$ | $\mathbb{Z} / \mathbf{8}$ | D_{8} | Q_{8} |
| :---: | :---: | :---: | :---: | :---: |
| $\operatorname{orb}\left(x^{2} y^{2}\right)$ | $\{0\}$ | | | |
| $\operatorname{orb}\left(x^{4}+y^{2} z^{2}\right)$ | $\left\{v^{2}\right\}$ | | | |
| $\operatorname{orb}\left(x^{2} y z+x y^{2} z+x y z^{2}\right)$ | | | $\{0\}$ | |
| $\operatorname{orb}\left(x^{4}+x^{2} y z+x y^{2} z+x y z^{2}\right)$ | | | $\{\alpha+\beta, \beta\}$ | $\{0\}$ |
| $\operatorname{orb}\left(x^{4}+x^{2} y z+x y^{2} z+x y z^{2}+y^{2} z^{2}\right)$ | | | $\{\alpha\}$ | |
| $\operatorname{orb}\left(x^{2} y z+x y^{2} z+x y z^{2}+x^{2} y^{2}+x^{2} z^{2}+y^{2} z^{2}\right)$ | | | $\{4 t\}$ | |
| | $\operatorname{orb}(u v)$ | $\{0\}$ | | |
| | $\operatorname{orb}\left(u v+u^{2}\right)$ | $\left\{4 s^{2}\right\}$. | | |

Case $|G|=p^{3}$ was done together with Maya and Mejia.

Isomorphism of Twisted Drinfeld Doubles

For $G=A \rtimes_{F} K$ and $\widehat{G}=K \ltimes_{\widehat{F}} \widehat{A}$ with

$$
\begin{aligned}
& \omega\left(\left(a_{1}, k_{1}\right),\left(a_{2}, k_{2}\right),\left(a_{3}, k_{3}\right)\right):=\widehat{F}\left(k_{1}, k_{2}\right)\left(a_{3}\right) \epsilon\left(k_{1}, k_{2}, k_{3}\right) \\
& \widehat{\omega}\left(\left(k_{1}, \rho_{1}\right),\left(k_{2}, \rho_{2}\right),\left(k_{3}, \rho_{3}\right)\right):=\epsilon\left(k_{1}, k_{2}, k_{3}\right) \rho_{1}\left(F\left(k_{2}, k_{3}\right)\right) .
\end{aligned}
$$

Hu and Wan 2020 have shown that the following map is an isomorphism of quasi-hopf, quasi-triagular Hopf algebras:

$$
\begin{aligned}
D^{\omega}(G) & \xlongequal{\cong} D^{\widehat{\omega}}(\widehat{G}) \\
(a: x) \otimes \delta_{(b: y)} & \mapsto \frac{1}{|A|} \sum_{\rho, \eta \in \widehat{A}} \rho(a) \eta(b)^{-1} \delta_{\left(x y x^{-1}: \rho\right)} \otimes(x: \eta)
\end{aligned}
$$

Ganeralization to continuous groups?

What is the generalization of $\operatorname{Vec}^{\omega}(\mathrm{G})$ to continuous groups?
Related to the question:
What does Chern-Simons theory assign to a point?
But, not quite...
For G a compact, connected Lie group we have (Reshetikhin-Turaev):

$$
\begin{aligned}
F: \operatorname{Bord}_{\langle 3,2,1\rangle} & \rightarrow \operatorname{Cat}_{\mathbb{C}} \\
F\left(S^{1}\right) & \mapsto \operatorname{Rep}\left(^{k} L G\right)
\end{aligned}
$$

$\operatorname{Rep}\left({ }^{\star} L G\right)$ is the category of positive energy representations of the Loop Group $L G$ at level $k \in H^{4}(B G, \mathbb{Z})$.

Idea of generalization to continuous groups

Joint work with:
J. Blanco (Ph.D. student) and K. Waldorf (Greifswald).

Extract the information of $\operatorname{Vec}^{\omega}(\mathrm{G})$ and its module categories and set it up in the 2-category of sets with $U(1)[1]$ structure.

\mathbb{C} - categories	$U(1)[1]$-bundles over Sets
Pointed fusion category	monoid object over G
Vec $^{\omega}(\mathrm{G})$	$\omega \in Z^{3}(G, U(1))$
Module category	Representation

2-category of geometrical $U(1)$-Gerbes

$U(1)$-Gerbes over manifolds. Objects:

$$
U(1)[1] \rightarrow P \rightarrow M
$$

Morita equivalence classes of extensions as groupoids

+ morphisms, + 2-morphisms...
Monoid objects, representations of these monoid objects on $U(1)$-gerbes, endomorphism category of a representation ...

Very difficult. Instead use a homological/topological model.

Segal-Mitchison cohomology [1970]

Coefficients:
Compactly generated and locally contractible Hausdorff topological abelian groups.

$$
A \hookrightarrow E A \longrightarrow B A
$$

is a short exact sequence of groups in this category.
Any group A may be resolved by contractible groups:

$$
A \hookrightarrow E A \xrightarrow{\partial_{0}} E B A \xrightarrow{\partial_{1}} E B^{2} A \xrightarrow{\partial_{2}} E B^{3} A \xrightarrow{\partial_{3}} \cdots .
$$

SM-cohomology of spaces

Let X be a paracompact space. Consider the complex

$$
C^{m}(X, \underline{A}):=\operatorname{Map}\left(X, E B^{m} A\right), \quad \partial
$$

Segal-Mitchison cohomology of X :

$$
H^{*}(X, \underline{A})=H^{*}\left(C^{*}(X, \underline{A}), \partial\right)
$$

Properties. Cocycles: $Z^{m}(X, \underline{A}) \cong \operatorname{Map}\left(X, B^{m} A\right)$

$$
H^{m}(X, \underline{A})=\left\{\begin{array}{cc}
{\left[X, B^{m} A\right]} & m>0 \\
\operatorname{Map}(X, A) & m=0
\end{array}\right.
$$

SM cohomology of simplicial spaces

Let X_{0} be a paracompact simplicial space. Define the double complex:

$$
C^{p, q}\left(X_{\bullet}, \underline{A}\right):=\operatorname{Map}\left(X_{p}, E B^{q} A\right)
$$

and consider the total complex

$$
C^{*}\left(X_{\bullet}, \underline{A}\right):=\operatorname{Tot}\left(C^{*, *}\left(X_{\bullet}, \underline{A}\right)\right)
$$

Segal-Mitchison cohomology of X_{0} :

$$
H^{*}\left(X_{\bullet}, \underline{A}\right)=H^{*}\left(C^{*}\left(X_{\bullet}, \underline{A}\right), \partial \pm \delta\right)
$$

SM cohomology of topological groups

Let G be paracompact and compactly generated topological group. Let G. be its simplicial space (BG).

Definition The Segal-Mitchison cohomology of G with coefficients in A is $H^{*}\left(G_{\bullet}, \underline{A}\right)$.

- $H^{1}\left(G_{\bullet}, \underline{A}\right) \cong \operatorname{Hom}(G, A)$. (Segal)
- $H^{2}\left(G_{\bullet}, \underline{A}\right) \cong \operatorname{Ext}(G, A) ; A$-central extensions of G. (Segal)
- $H^{3}\left(G_{\bullet}, \underline{A}\right) \cong \operatorname{Ext}(G[0], A[1]) ; 2$-group $A[1]$-central extensions of $G[0]$. (Schommer-Pries, Breen, Rousseau)

SM cohomology. Further properties

For G discrete or A contractible:

$$
H^{*}\left(G_{0}, \underline{A}\right) \cong H_{\text {cont }}^{*}(G, A)
$$

For A discrete:

$$
H^{*}\left(G_{0}, \underline{A}\right) \cong H^{*}(B G, A) .
$$

Lyndon-Hochschild-Serre spectral sequence.

$$
S \hookrightarrow G \rightarrow K
$$

LHS spectral sequence abuts to $H^{*}\left(G_{0}, \underline{A}\right)$ and whose second page is:

$$
E_{2}^{p, q} \cong H^{p}\left(K_{\mathbf{0}}, H^{q}\left(S_{\mathbf{0}}, \underline{A}\right)\right) .
$$

Segal-Mitchison A-gerbes

Objects: (M, α), with M paracompact and locally compact space and

$$
\alpha \in Z^{2}(M, \underline{A}) \cong \operatorname{Map}\left(M, B^{2} A\right)
$$

Morphisms:

$$
(M, \alpha) \xrightarrow{(F, c)}(N, \beta)
$$

for $F ; M \rightarrow N$ and $c \in C^{1}(M, \underline{A})$ with $\alpha-F^{*} \beta=\partial c$. 2-Morphisms:

$$
\left(F, c_{1}\right) \stackrel{e}{\Longrightarrow}\left(F, c_{2}\right)
$$

for $e \in C^{0}(M, \underline{A})$ such that $\partial e=c_{2}-c_{1}$.

Multiplicative Segal-Mitchison A-gerbes

 Monoidal structure:$$
(M, \alpha) \times(N, \beta):=\left(M \times N, \pi_{M}^{*} \alpha+\pi_{N}^{*} \beta\right)
$$

with π_{M} and π_{N} the projections on M and N respectively.
Definition: A multiplicative SM A-gerbe $\langle M, \omega\rangle$ is a monoid object in SM A-gerbes.

Multiplicative SM A-gerbes over the monoid M

elements $\omega \in Z^{3}\left(M_{\bullet}, \underline{A}\right)$

Representations of Multiplicative SM A-gerbes

 Objects: (N, β), with M acting on N and $\beta \in Z^{2}((N \rtimes M) \bullet, \underline{A})$ such that$$
d_{N \rtimes M} \beta=\pi^{*} \omega
$$

where $\pi:(N \rtimes M) \bullet \rightarrow M_{\bullet}$ is the projection.
Morphisms:

$$
(N, \beta) \xrightarrow{(F, \gamma)}\left(N^{\prime}, \beta^{\prime}\right)
$$

for M-equivariant $F: N \rightarrow N^{\prime}$ and $\gamma \in C^{1}((N \rtimes M) \bullet, \underline{A})$ with $\beta-F^{*} \beta^{\prime}=d_{N \rtimes M} \gamma$.
2-Morphisms:

$$
\left(F, \gamma_{1}\right) \stackrel{\nu}{\Longrightarrow}\left(F, \gamma_{2}\right)
$$

for $\nu \in C^{0}((N \rtimes M) \bullet, \underline{A})$ such that $d_{N \rtimes M \nu}=\gamma_{2}-\gamma_{1}$.

Endomorphisms of Representations The monoidal category of endomorphisms

$$
\operatorname{End}_{\langle M, \omega\rangle}(N, \beta)
$$

could be understood as a crossed-module (2-group)

$$
C^{0}((N \rtimes M) \bullet, \underline{A}) \rightarrow \operatorname{End}_{\langle M, \omega\rangle}^{0}(N, \beta)
$$

with

$$
\pi_{1}=\operatorname{Map}(N, A)^{M} \quad \text { and } \quad \pi_{0}=\pi_{0}\left(\operatorname{End}_{\langle M, \omega\rangle}^{0}(N, \beta)\right)
$$

$$
H^{1}((N \rtimes M) \bullet, \underline{A}) \rightarrow \pi_{0}\left(\operatorname{End}_{\langle M, \omega\rangle}^{0}(N, \beta)\right) \rightarrow \operatorname{End}_{M}(N,[\beta])
$$

Note: Here we need that M acts on N transitively.

Conditions for duality; $A=U(1)$

$\langle G, \omega\rangle$ multiplicative SM $U(1)$-gerbe.
S abelian and normal subgroup of G;

$$
S \longrightarrow G \longrightarrow K
$$

$$
[\omega] \in \Omega(G, S)=\operatorname{Ker}\left(\operatorname{Ker}\left(H^{3}\left(G_{0}, \underline{U(1)}\right) \rightarrow E_{\infty}^{0,3}\right) \rightarrow E_{\infty}^{1,2}\right)
$$

Choice	Reason
$S \subset G$ abelian	$\hat{\hat{S}} \cong S$
$[\omega]]_{S}=0$ in $H^{3}\left(S_{0}, \underline{U(1)}\right)$	(K, β) is a $\langle G, \omega\rangle$-rep.
$S \triangleleft G \rightarrow K$ normal	Hom $\mathcal{G}(K, K)=K$
$[\omega] \mapsto 0$ in $E_{\infty}^{1,2}(L H S)$	Dual group surjects to K

Main result: Duality construction.

Consider the central extension of loc. contractible, compactly gen. and paracompact groups with S locally compact

$$
S \longrightarrow G \longrightarrow K
$$

Take $[\omega] \in \Omega(G, S)$ and (K, β) as before.
Theorem (Blanco-U-Waldorf-2020)

$$
U(1)[1] \longrightarrow \operatorname{End}_{\langle G, \omega\rangle}(K, \beta) \longrightarrow \widehat{G}[0]
$$

is an extension of 2-groups with

$$
\widehat{S} \longrightarrow \widehat{G} \longrightarrow K
$$

and whose extension class is $\left[\widehat{\alpha}_{(K, \beta)}\right] \in H^{3}\left(\widehat{G}_{0}, \underline{U(1)}\right)$.

Pontrjagin duality of multiplicative gerbes

Denote the multiplicative gerbes $\langle G, \omega\rangle$ and $\langle\widehat{G}, \widehat{\omega}\rangle$ Pontrjagin dual.

$$
\langle G, \omega\rangle \leftrightarrow\langle\widehat{G}, \widehat{\omega}\rangle
$$

Examples

- S loc. compact abelian, $\langle S, 0\rangle \leftrightarrow\langle\widehat{S}, 0\rangle$
- $S U(2) \xrightarrow{\pi} S O(3), S=\mathbb{Z} / 2, \rho \in H^{1}(\mathbb{Z} / 2, U(1))$

$$
\left\langle S U(2), 4 k c_{2}\right\rangle \leftrightarrow\left\langle S O(3) \times \mathbb{Z} / 2, k p_{1}+\omega_{2} \rho\right\rangle
$$

$$
\begin{gathered}
-\mathbb{R}^{3}, \mathcal{H}=\left\{\left(\begin{array}{lll}
1 & a & c \\
0 & 1 & b \\
0 & 0 & 1
\end{array}\right): a, b, c \in \mathbb{R}\right\}, \alpha(\mathbf{r}, \mathbf{s}, \mathbf{t})=e^{2 \pi i r_{1} s_{2} t_{3}} \\
\left\langle\mathbb{R}^{3}, \alpha\right\rangle \leftrightarrow\langle\mathcal{H}, 0\rangle
\end{gathered}
$$

- etcetera.

"Strictification" and center

Mult. Gerbe	2-group
$\langle G, \omega\rangle$	$\operatorname{End}_{\langle G, \omega\rangle}(G, \bar{\omega})$
$\langle\widehat{G}, \widehat{\omega}\rangle$	$\operatorname{End}_{\langle G, \omega\rangle}(K, \beta)$

Let the center of the monoidal category \mathcal{C} be:

$$
\mathcal{Z}(\mathcal{C})=\operatorname{End}_{\mathcal{C}-\mathcal{C}}(\mathcal{C})
$$

Theorem: (Blanco-U-Waldorf) Pontrjagin dual multiplicative gerbes $\langle G, \omega\rangle$ and $\langle\widehat{G}, \widehat{\omega}\rangle$ have equivalent centers

$$
\mathcal{Z}\langle G, \omega\rangle \simeq \mathcal{Z}\langle\widehat{G}, \widehat{\omega}\rangle
$$

What about representations?

The information encoded in $\mathcal{Z}\langle G, \omega\rangle$ is precisely the information required to define FHT K-theory

$$
{ }^{\tau(\omega)} K_{G}(G) .
$$

But, we still do not know how to represent $\mathcal{Z}\langle G, \omega\rangle$ in vector spaces.

If we had such construction, we expect

$$
\pi_{0}(\text { " } \operatorname{Rep} "(\mathcal{Z}\langle G, \omega\rangle)) \cong{ }^{\tau(\omega)} K_{G}(G)
$$

and therefore we would expect that Pontrjagin dual multiplicative gerbes induce isomorphic Verlinde algebras...

Conclusions

We have defined (cohomological) Segal-Michison gerbes.
In this category we are able to define Pontrjagin dual multiplicative gerbes (this duality is also known as Electric-magnetic duality).

We show that Pontrjagin dual multiplicative gerbes have equivalent centers.

We have generalized the Twisted Drinfeld Double to topological groups.

This talk is based on the articles

- Blanco, U., Waldorf. Pontrjagin duality on multiplicative gerbes. arxiv:2012.05056
- Maya, Castaño, U. Classification of pointed fusion categories of dimension p^{3} up to weak Morita equivalence. J. Algebra Appl. (2021).
- Muñoz, U. Classification of pointed fusion categories of dimension 8 up to weak Morita equivalence. Comm. Algebra (2018).
- U. On the classification of pointed fusion categories up to weak Morita equivalence. Pacific J. Math. (2017).

THANKS!

