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Quantum groups

They could be thought as "deformations” of classical groups.

They should be taken as the

"Symmetry groups”

Include: Hopf algebras and their generalizations.



Yang-Baxter equation

R;;Ry;3R;; =Ry Ry Ryg
S v

Condition for integrability of 1D and 2D quantum systems.
Quantum integrable group — Quasi-triangular Hopf Algebra



Drinfeld Double

H finite dimensional Hopf C-algebra.

H* = Hom¢(H, C), dual Hopf algebra.

D(H) := H ® H* (Drinfeld Double)

The image of the identity map
Hom¢(H,H) 2 H* @ H

provides an R-matrix that satisfies the Yang-Baxter equation.
If {vi}icsis a basis for H, and {v'},c, is the dual basis for H*:

R=> (1®V)®(v®1) € End(D(H) ® D(H))

iel




Drinfeld Double of finite group D(G)
D(G)=CG®CC. Base: {g® d|(g,X) € G}.

(@@ 0)(h®dy) = bymn1(gh®3y), 1= 10
9geG

Agd) =) (@6 ®(g® ),  €(g® bx) = bx1

ab=x

S(g X 5)() = Q_1 @ 5g,1x,1g

R=Y (106)®(x®0))
x,yeG



Twisted Drinfeld Double of finite group D“(G)

w € Z3(G, U(1)) normalized cocycle. Define:

_w(g, h,x)w(ghxh~'g~1, g, h)

Pl )= w(g, hxh=1, h)

w(gxg=1,9y9 1,9)w(g. X, y)
w(gxg=1,9,y)

,Ug(Xay) -

(g & 5X)(h @ 6}/) = 5x,hyh—15y(ga h)(gh ® 5}/)7 1= Z e® 5X
geG

Ag®ox) =Y ng(ab)(g®da) @ (g®6p),  €(g®dx) = dxi

ab=x



Twisted Drinfeld Double of finite group D“(G)
1

S ®5x — 71@(571)(71
R W [ i A
R= ) (126)®(x®4d)

x,yeG
o= > wxy.2) (105 o(1ed)o(1®d,)
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Note: (w, 3, 1) define a cocycle in Z3(G x G, U(1)) via the
pullback of the multiplication map

Gx G— G, (g,x)— gx



Representations of D¥(G)

Category of representations Rep(D¥(G)) of the Twisted
Drinfeld Double D“(G) becomes a Modular Tensor Category.

Modular Tensor Category: non-degenerate braided fusion
category with a choice of spherical structure.

Extended Chern-Simons Field theory (Reshetikhin-Turaeyv,
Freed):

F - BOI'd<3’2’1> —Catc
F(S') —Rep(D*(G))



Twisted equivariant K-theory

The isomorphism classes of representations

mo(Rep(D*(G)))

could be interpreted as the G-Twisted equivariant K-theory
groups of G (Freed-Hopkins-Teleman, Willerton,...)

"“IKs(G) =

D

(x)eConj(G)

*R(Cg(x))

with "pull-push” product structure.



Pointed fusion category Vec“(G)

The finite tensor category Vec*(G) is a pointed fusion
category, i.e. all its simple objects are invertible.

Objects: G-graded vector spaces V = ©yegVy.
Monoidal structure: (V @ W)k = @Dpg_k Va @ Wg.

Associativity constraint: (V, @ W) ® Zk w(h’—gsk) Vih @ (W ® Zk)



2-Category of module categories over Vec*(G)

A module category M over the tensor category C consist of a
functor

MC—- M
and functorial associativity

puxy M@(XeY)S (Mo X)eY
satisfying the pentagon axiom, + more structures.

ldecomposable modules: M(A\G, 1) with g = 7*w.



Dual category of C = Vec*”(G)

For M an idecomposable module category over Vec*(G), the
dual category is:

C;k\/t = Endc(./\/l)
For C and M semisimple, C}, is semisimple and

(Crm)m =C




(Drinfeld) Center of monoidal category

Consider C as a module category over C ® C°P. The center of C
is:

Z (C) = EndC®Cop (C)

For C a fusion category, its center becomes a Braided Fusion
Category. Moreover,

Z(Vec®(G)) = Rep(D*(G))

as Braided Fusion Categories.




Morita equivalence

Two fusion categories C and D are called Morita equivalent if
there exists an idecomposable module category over C such
that

Cu =D

Morita equivalent fusion categories C and D have equivalent
categories of module categories. Moreover

Theorem (Etingof-Nikshish-Ostrik)
Fusion categories C and D are Morita equivalent if and only if
Z(C) and Z(D) are equivalent as Braided Fusion Categories.



Since Rep(D~(G)) = Z(Vec”(G))

Therefore:

Vee*(G) i Vee?(G) | ¢ |Rep(D(G)) = Rep(D*(G))

Morita equivalent pointed fusion categories determine
equivalent Chern Simons Extended Field theories.

So, when are Vec*(G) and Vec®(G) Morita equivalent?



Vec”(G) ~porita Vec¥'(G)
Theorem [Uribe 2016]:
Vec”(G) and Vec®(G) are Morita equivalent, if and only if: -

¢: G= Axg K|with Aabelian and F € Z?(K, A).

A~ A~

-16: G= K x; A|with A= Hom(A, U(1)) and F € Z%(K, A).

- There exists ¢ : K3 — U(1) such that |6xe = F A F
- [¢*n] = [w] and [¢*7] = [] with

n((ar, ki), (@2, ko), (@s, k3)) :=F (K1, k2)(as) e(ki, ko, k3)
ﬁ((k1 y P )7 (k27 02), (k37 pS)) ::E(k1 ) k27 k3) P (F(k27 k3))




Reminiscent of T-duality

w=F-

Vec”(G)

Vec®(G)

Ax A

NN
A

~

w

w=F-¢



Morita equivalence classes for |G| = 4

ZJ2 X ]2 Z]4
{0}
orb(x*)
orb(x* + x?y? + y*)
orb(x°y?) 10}

{v*}
{23
3

Vec* Y (Z,/2 X 7./2) “yorita Vec(Z/4)



Morita equivalence classes for |G| = 8

Together with student Munoz.

(Z./2)3 7.)4x7./2 | 7./8| Dg | Qg
orb(x2y?) {0}
orb(x41y222) (v?)
orb(x2yz+xy2 z+xyz2) {0}
orb(x* +x2yz+xy2 z+xyz2) {a+8,8} | {0}
orb(x* 132 yz4xy? 2+ xyz2 +y2 22) {a}
orb(x2 yz4+-xy2 2+ xyz2 +x2y2 1 x2 22 1 y2 22) {4t}
orb(uv) {0}
orb(uv+u?) {452},

Case |G| = p® was done together with Maya and Mejia.




Isomorphism of Twisted Drinfeld Doubles
For G=AxrKandG= K xz A with

UJ((EH Ky ), (82, kg), (83, k3)) ::F(k1 , kg)(a3) 6(k1 , Ko, k3)
w((k1, p1), (K2, p2), (Ks, p3)) :=¢€(K1, Kz, ks) p1(F (kz, k3)).

Hu and Wan 2020 have shown that the following map is an
isomorphism of quasi-hopf, quasi-triagular Hopf algebras:

D*(G) SD°(G)

(@: X) ® d(by) H‘%' Z p(a)n(b)~ Syx-1:) ® (X 2 1)



Ganeralization to continuous groups?
What is the generalization of Vec”(G) to continuous groups?

Related to the question:
What does Chern-Simons theory assign to a point?
But, not quite...

For G a compact, connected Lie group we have
(Reshetikhin-Turaev):
F - BOI'd<3’271> —Catc
F(S') —~Rep(“LG)

Rep(¥LG) is the category of positive energy representations of
the Loop Group LG at level k € H*(BG, Z).



ldea of generalization to continuous groups

Joint work with:
J. Blanco (Ph.D. student) and K. Waldorf (Greifswald).

Extract the information of Vec*(G) and its module categories
and set it up in the 2-category of sets with U(1)[1] structure.

C — categories U(1)[1]-bundles over Sets
Pointed fusion category monoid object over G
Vec”(G) w € Z3(G,U(1))
Module category Representation




2-category of geometrical U(1)-Gerbes
U(1)-Gerbes over manifolds. Objects:
unf]j—P—-M
Morita equivalence classes of extensions as groupoids
+ morphisms, + 2-morphisms...

Monoid objects, representations of these monoid objects on
U(1)-gerbes, endomorphism category of a representation ...

Very difficult. Instead use a homological/topological model.



Segal-Mitchison cohomology [1970]

Coefficients:
Compactly generated and locally contractible Hausdorff
topological abelian groups.

A— EA— BA
is a short exact sequence of groups in this category.

Any group A may be resolved by contractible groups:

A< EA -2, EBA -2 EBPA % EBBA -2



SM-cohomology of spaces
Let X be a paracompact space. Consider the complex

C™(X,A) := Map(X, EBTA), 0.
Segal-Mitchison cohomology of X:
H'(X,A) = H*(C'(X, A),d).
Properties. Cocycles: Z™(X, A) = Map(X, B"A)

[X,B"A] m>0
Map(X,A) m=20

H7(X, A) = {




SM cohomology of simplicial spaces

Let X, be a paracompact simplicial space. Define the double

complex:
CP9(X.,A) := Map(X,, EBIA)

and consider the total complex
C*(X,, A) := Tot(C*( X, A)).
Segal-Mitchison cohomology of X,:

H*(X.,A) = H*(C*(X., A), d + 6).



SM cohomology of topological groups

Let G be paracompact and compactly generated topological
group. Let G, be its simplicial space (BG).

Definition The Segal-Mitchison cohomology of G with
coefficients in Ais H*(G., A).

- H'(G., A) = Hom(G, A). (Segal)
- H3(G., A) = Ext(G, A); A-central extensions of G. (Segal)

- H3(G.,, A) = Ext(G[0], A[1]); 2-group A[1]-central extensions
of G[0]. (Schommer-Pries, Breen, Rousseau)



SM cohomology. Further properties
For G discrete or A contractible:

H'(G., A) = Heont(G, A).

For A discrete:
H*(G,,A) = H*(BG, A).

Lyndon-Hochschild-Serre spectral sequence.

S—G—-K

LHS spectral sequence abuts to H*(G,, A) and whose second
page is:
EX9 >~ HP(K,, HI(S., A)).



Segal-Mitchison A-gerbes

Objects: (M, a), with M paracompact and locally compact
space and

o € Z%(M, A) = Map(M, B?A)

Morphisms:

(M, a) ©9 (N, 8)

for F; M — N and ¢ € C'(M, A) with o — F*3 = dc.
2-Morphisms:

(F,C1) :e> (F,Cg)
for e € C°(M, A) such that 0e = ¢ — ¢4.




Multiplicative Segal-Mitchison A-gerbes

Monoidal structure:
(M, a) x (N, 8) == (M x N, o+ my)
with 7y, and 7y the projections on M and N respectively.

Definition: A multiplicative SM A-gerbe (M, w) is a monoid
object in SM A-gerbes.

Multiplicative SM A-gerbes over the monoid M

)

elements w € Z3(M,, A)




Representations of Multiplicative SM A-gerbes
Objects: (N, 3), with M acting on N and 8 € Z2((N x M),, A)
such that

AnsmfB = W
where 7 : (N x M), — M, is the projection.
Morphisms:

(N.5) "2 (N, )
for M-equivariant F : N — N’ and v € C'((N x M),, A) with

B — F*6" = dnsm-
2-Morphisms:

(F,m) = (F.2)
for v € CO((N x M),, A) such that dy.yv = 72 — 1.




Endomorphisms of Representations
The monoidal category of endomorphisms

End(M,w} (N7 B)

could be understood as a crossed-module (2-group)

C°((N > M)., A) — Endjy (N, 5)

with
— Map(N, A)M and g = ﬂo(End?M’m(N, B)).

H'((N x M),, A) — wo(End?Mm(N, B)) — Endy(N, [B]).
Note: Here we need that M acts on N transitively.



Conditions for duality; A = U(1)
(G, w) multiplicative SM U(1)-gerbe.
S abelian and normal subgroup of G;

S—G— K|
[w] € Q(G,S) = Ker(Ker(Hs(G.,w) — E%® = El?)

Choice Reason
S C G abelian S~S§
[wlls = 0in (S, U(1)) | (K, ) is a (G,uw)-Tep.
S <G — K normal Homg(K, K) = K
[w] — 0in E}(LHS) | Dual group surjects to K




Main result: Duality construction.
Consider the central extension of loc. contractible, compactly
gen. and paracompact groups with S locally compact

S—G— K|

Take [w] € (G, S) and (K, () as before.
Theorem (Blanco-U-Waldorf-2020)

U(1)[1] — Endig.(K, 8) — G[0]

is an extension of 2-groups with

§—>é—>K

~

and whose extension class is [a(x 5] € H*(G., U(1)).



Pontrjagin duality of multiplicative gerbes

Denote the multiplicative gerbes (G, w) and (CAE, w) Pontrjagin
dual.



Examples _
- S loc. compact abelian, | (S,0) < (S, 0)

- SU(2) & SO(3), S =17/2, p € H'(Z/2, U(1))
(SU(2), 4kcs) <+ (SO(3) x Z/2, kpy + wap)

- etcetera.

oo -
o =
= OO0

) ra,b,ce R}, a(r, s, t) = e2minst

(R3, a) <> (#H,0)




“Strictification" and center

Mult. Gerbe 2-group
(G,w) End g, (G, )
(G, W) Endg.) (K, ()

Let the center of the monoidal category C be:

Z(C) = Endc_c(C) .

Theorem: (Blanco-U-Waldorf) Pontrjagin dual multiplicative
gerbes (G,w) and (G, ) have equivalent centers

Z(G,w) ~ Z(G,5)




What about representations?
The information encoded in Z(G,w) is precisely the
information required to define FHT K-theory

"“Kg(G).

But, we still do not know how to represent Z(G, w) in vector
spaces.

If we had such construction, we expect
mo (‘Rep"(2(G,w))) = "WKga(G)

and therefore we would expect that Pontrjagin dual
multiplicative gerbes induce isomorphic Verlinde algebras...



Conclusions

We have defined (cohomological) Segal-Michison gerbes.

In this category we are able to define Pontrjagin dual
multiplicative gerbes (this duality is also known as
Electric-magnetic duality).

We show that Pontrjagin dual multiplicative gerbes have
equivalent centers.

We have generalized the Twisted Drinfeld Double to
topological groups.
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