Pontrjagin duality on multiplicative gerbes

Bernardo Uribe Jongbloed

Universidad del Norte, Barranquilla Max Planck Institut für Mathematik, Bonn

Mathematics Colloquium, Hamburg May 11th 2021

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Acknowledgments

Collaborators

- Kevin Maya and Alvaro Muñoz (Master students)
- Jaider Blanco (Ph.D. student)
- Adriana Mejía (Colleague at Uninorte)
- Konrad Waldorf (Colleague at Greifswald)

Institutions

- Alexander Von Humboldt Stiftung (Institutpartnerschaft Greifswald-Uninorte-UNALMED)
- Max Planck Institut für Mathematik

Contents

The finite group case

- Twisted Drinfeld Double
- Pointed fusion categories
- Morita equivalence
- The topological group case
 - Segal-Mitchison multiplicative gerbes
 - Representation of SM multiplicative gerbes

- Pontrjagin dual multiplicative gerbes
- Center of multiplicative SM gerbes

Conclusions

They could be thought as "deformations" of classical groups.

They should be taken as the

"Symmetry groups"

Include: Hopf algebras and their generalizations.

Yang-Baxter equation

Condition for integrability of 1D and 2D quantum systems. Quantum integrable group -> Quasi-triangular Hopf Algebra

Drinfeld Double

H finite dimensional Hopf \mathbb{C} -algebra.

 $H^* = \operatorname{Hom}_{\mathbb{C}}(H, \mathbb{C})$, dual Hopf algebra.

 $D(H) := H \otimes H^*$ (Drinfeld Double)

The image of the identity map

 $Hom_{\mathbb{C}}(H,H)\cong H^*\otimes H$

provides an *R*-matrix that satisfies the Yang-Baxter equation. If $\{v_i\}_{i \in I}$ is a basis for *H*, and $\{v^i\}_{i \in I}$ is the dual basis for H^* :

$$\boldsymbol{R} = \sum_{i \in I} (1 \otimes \boldsymbol{v}^i) \otimes (\boldsymbol{v}_i \otimes 1) \in \mathrm{End}(\mathrm{D}(\mathrm{H}) \otimes \mathrm{D}(\mathrm{H}))$$

Drinfeld Double of finite group D(G) $D(G) = \mathbb{C}G \otimes \mathbb{C}^G$. Base: $\{g \otimes \delta_x | (g, x) \in G\}$.

$$(\boldsymbol{g}\otimes\delta_{\boldsymbol{x}})(\boldsymbol{h}\otimes\delta_{\boldsymbol{y}})=\delta_{\boldsymbol{x},\boldsymbol{h}\boldsymbol{y}\boldsymbol{h}^{-1}}(\boldsymbol{g}\boldsymbol{h}\otimes\delta_{\boldsymbol{y}}),\qquad 1=\sum_{\boldsymbol{g}\in\boldsymbol{G}}\mathbf{1}\otimes\delta_{\boldsymbol{x}}$$

$$\Delta(\boldsymbol{g}\otimes\delta_{\boldsymbol{x}})=\sum_{\boldsymbol{a}b=\boldsymbol{x}}(\boldsymbol{g}\otimes\delta_{\boldsymbol{a}})\otimes(\boldsymbol{g}\otimes\delta_{\boldsymbol{b}}),\qquad\epsilon(\boldsymbol{g}\otimes\delta_{\boldsymbol{x}})=\delta_{\boldsymbol{x},\boldsymbol{1}}$$

$$S(g\otimes \delta_x)=g^{-1}\otimes \delta_{g^{-1}x^{-1}g}$$

$$R = \sum_{x,y\in G} (1\otimes \delta_x) \otimes (x\otimes \delta_y)$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Twisted Drinfeld Double of finite group $D^{\omega}(G)$ $\omega \in Z^{3}(G, U(1))$ normalized cocycle. Define:

$$\beta_{x}(g,h) = \frac{\omega(g,h,x)\omega(ghxh^{-1}g^{-1},g,h)}{\omega(g,hxh^{-1},h)}$$
$$\mu_{g}(x,y) = \frac{\omega(gxg^{-1},gyg^{-1},g)\omega(g,x,y)}{\omega(gxg^{-1},g,y)}$$

$$(\boldsymbol{g}\otimes\delta_{\boldsymbol{x}})(\boldsymbol{h}\otimes\delta_{\boldsymbol{y}})=\delta_{\boldsymbol{x},\boldsymbol{h}\boldsymbol{y}\boldsymbol{h}^{-1}}\beta_{\boldsymbol{y}}(\boldsymbol{g},\boldsymbol{h})(\boldsymbol{g}\boldsymbol{h}\otimes\delta_{\boldsymbol{y}}),\qquad \mathbf{1}=\sum_{\boldsymbol{g}\in\boldsymbol{G}}\boldsymbol{e}\otimes\delta_{\boldsymbol{x}},$$

$$\Delta(g \otimes \delta_x) = \sum_{ab=x} \mu_g(a, b)(g \otimes \delta_a) \otimes (g \otimes \delta_b), \qquad \epsilon(g \otimes \delta_x) = \delta_{x,1}$$

Twisted Drinfeld Double of finite group $D^{\omega}(G)$

$$egin{aligned} S(g\otimes\delta_x)&=rac{1}{eta_{x^{-1}}(g^{-1},g)\mu_g(x,x^{-1})}(g^{-1}\otimes\delta_{g^{-1}x^{-1}g})\ R&=\sum_{x,y\in G}(1\otimes\delta_x)\otimes(x\otimes\delta_y)\ \Phi&=\sum_{x,y,z\in G}\omega(x,y,z)^{-1}(1\otimes\delta_x)\otimes(1\otimes\delta_y)\otimes(1\otimes\delta_z) \end{aligned}$$

Note: (ω, β, μ) define a cocycle in $Z^3(G \ltimes G, U(1))$ via the pullback of the multiplication map

$$G\ltimes G
ightarrow G,\ \ (g,x)\mapsto gx$$

Representations of $D^{\omega}(G)$

Category of representations $Rep(D^{\omega}(G))$ of the Twisted Drinfeld Double $D^{\omega}(G)$ becomes a Modular Tensor Category.

Modular Tensor Category: non-degenerate braided fusion category with a choice of spherical structure.

Extended Chern-Simons Field theory (Reshetikhin-Turaev, Freed):

$$egin{aligned} & \mathcal{F}: \operatorname{Bord}_{\langle 3,2,1
angle} o \operatorname{Cat}_{\mathbb{C}} \ & \mathcal{F}(\mathcal{S}^1) \mapsto & \mathcal{Rep}(\mathcal{D}^{\omega}(\mathcal{G})) \end{aligned}$$

Twisted equivariant K-theory

The isomorphism classes of representations

 $\pi_0(\operatorname{Rep}(D^\omega(G)))$

could be interpreted as the G-Twisted equivariant K-theory groups of G (Freed-Hopkins-Teleman, Willerton,...)

$$\overline{\Gamma^{(\omega)}\mathcal{K}_G(G)}\cong igoplus_{(x)\in \mathit{Conj}(G)}{}^{eta_x}\mathcal{R}(\mathcal{C}_G(x))$$

with "pull-push" product structure.

Pointed fusion category $Vec^{\omega}(G)$

The finite tensor category $Vec^{\omega}(G)$ is a *pointed fusion category*, i.e. all its simple objects are invertible.

Objects: *G*-graded vector spaces $V = \bigoplus_{g \in G} V_g$.

Monoidal structure:
$$(V \otimes W)_k = \bigoplus_{hg=k} V_h \otimes W_g$$
.

Associativity constraint: $(V_h \otimes W_g) \otimes Z_k \xrightarrow{\omega(h,g,k)} V_h \otimes (W_g \otimes Z_k)$

2-Category of module categories over $Vec^{\omega}(G)$

A module category ${\mathcal M}$ over the tensor category ${\mathcal C}$ consist of a functor

$$\mathcal{M}\otimes\mathcal{C}\to\mathcal{M}$$

and functorial associativity

$$\mu_{M,X,Y}: M \otimes (X \otimes Y) \xrightarrow{\sim} (M \otimes X) \otimes Y$$

satisfying the pentagon axiom, + more structures.

Idecomposable modules: $\mathcal{M}(A \setminus G, \mu)$ with $\delta_{G}\mu = \pi^* \omega$.

Dual category of $C = \operatorname{Vec}^{\omega}(G)$

For \mathcal{M} an idecomposable module category over $\operatorname{Vec}^{\omega}(G)$, the dual category is:

$$\mathcal{C}^*_\mathcal{M} = \operatorname{End}_\mathcal{C}(\mathcal{M})$$

For ${\mathcal C}$ and ${\mathcal M}$ semisimple, ${\mathcal C}^*_{{\mathcal M}}$ is semisimple and

$$(\mathcal{C}^*_\mathcal{M})^*_\mathcal{M}\cong\mathcal{C}$$

(Drinfeld) Center of monoidal category

Consider C as a module category over $C \otimes C^{op}$. The center of C is:

$$\mathcal{Z}(\mathcal{C}) = \operatorname{End}_{\mathcal{C}\otimes\mathcal{C}^{\operatorname{op}}}(\mathcal{C})$$

For \mathcal{C} a fusion category, its center becomes a Braided Fusion Category. Moreover,

$$\mathcal{Z}(\operatorname{Vec}^{\omega}(\operatorname{G}))\cong\operatorname{Rep}(\operatorname{D}^{\omega}(\operatorname{G}))$$

as Braided Fusion Categories.

Morita equivalence

Two fusion categories C and D are called *Morita equivalent* if there exists an idecomposable module category over C such that

$$\mathcal{C}^*_\mathcal{M}\cong\mathcal{D}$$

Morita equivalent fusion categories C and D have equivalent categories of module categories. Moreover

$$\mathcal{Z}(\mathcal{C})\cong\mathcal{Z}(\mathcal{D})$$

Theorem (Etingof-Nikshish-Ostrik) Fusion categories C and D are Morita equivalent if and only if $\mathcal{Z}(C)$ and $\mathcal{Z}(D)$ are equivalent as Braided Fusion Categories.

Since $Rep(D^{\omega}(G)) \cong \mathcal{Z}(Vec^{\omega}(G))$

Therefore:

$$\operatorname{Vec}^{\omega}(\operatorname{G})\simeq_{\operatorname{Morita}}\operatorname{Vec}^{\widetilde{\omega}}(\widetilde{\operatorname{G}})$$
 \leftrightarrow $\operatorname{Rep}(\operatorname{D}^{\omega}(\operatorname{G}))\cong\operatorname{Rep}(\operatorname{D}^{\widetilde{\omega}}(\widetilde{\operatorname{G}}))$

Morita equivalent pointed fusion categories determine equivalent Chern Simons Extended Field theories.

So, when are $\operatorname{Vec}^{\omega}(G)$ and $\operatorname{Vec}^{\widehat{\omega}}(\widehat{G})$ Morita equivalent?

$\frac{\operatorname{Vec}^{\omega}(G) \simeq_{\operatorname{Morita}} \operatorname{Vec}^{\widehat{\omega}}(\widehat{G})}{\operatorname{Theorem} [\operatorname{Uribe} 2016]:}$

 $\operatorname{Vec}^{\omega}(G)$ and $\operatorname{Vec}^{\widehat{\omega}}(\widehat{G})$ are Morita equivalent, if and only if: -

 $\phi: G \cong A \rtimes_F K$ with A abelian and $F \in Z^2(K, A)$.

$$- \left| \widehat{\phi} : \widehat{\boldsymbol{G}} \cong \boldsymbol{K} \ltimes_{\widehat{\boldsymbol{F}}} \widehat{\boldsymbol{A}} \right| \text{ with } \widehat{\boldsymbol{A}} = \text{Hom}(A, U(1)) \text{ and } \widehat{\boldsymbol{F}} \in \boldsymbol{Z}^{2}(\boldsymbol{K}, \widehat{\boldsymbol{A}}).$$

- There exists $\epsilon: K^3 \to U(1)$ such that $\left| \delta_{K} \epsilon = \widehat{F} \wedge F \right|$

-
$$[\phi^*\eta] = [\omega]$$
 and $[\widehat{\phi}^*\widehat{\eta}] = [\widehat{\omega}]$ with

$$\eta((a_1, k_1), (a_2, k_2), (a_3, k_3)) := \widehat{F}(k_1, k_2)(a_3) \epsilon(k_1, k_2, k_3)$$

$$\widehat{\eta}((k_1, \rho_1), (k_2, \rho_2), (k_3, \rho_3)) := \epsilon(k_1, k_2, k_3) \rho_1(F(k_2, k_3))$$

Reminiscent of T-duality

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ �� ◆

Morita equivalence classes for |G| = 4

 $\operatorname{Vec}^{x^2y^2}(\mathbb{Z}/2 \times \mathbb{Z}/2) \simeq_{\operatorname{Morita}} \operatorname{Vec}(\mathbb{Z}/4)$

Morita equivalence classes for |G| = 8Together with student Munõz.

$(\mathbb{Z}/2)^3$	$\mathbb{Z}/4 imes \mathbb{Z}/2$	$\mathbb{Z}/8$	D_8	Q_8
$orb(x^2y^2)$	{0}			
$orb(x^4+y^2z^2)$	$\{v^2\}$			
$orb(x^2yz+xy^2z+xyz^2)$			{0}	
$orb(x^4+x^2yz+xy^2z+xyz^2)$			$^{\{\alpha+\beta,\beta\}}$	{0}
$orb(x^4+x^2yz+xy^2z+xyz^2+y^2z^2)$			$\{\alpha\}$	
orb($x^2yz + xy^2z + xyz^2 + x^2y^2 + x^2z^2 + y^2z^2$)				{ 4 <i>t</i> }
	orb(uv)	{0}		
	$orb(uv+u^2)$	$\{4s^2\}.$		

Case $|G| = p^3$ was done together with Maya and Mejia.

Isomorphism of Twisted Drinfeld Doubles For $G = A \rtimes_F K$ and $\widehat{G} = K \ltimes_{\widehat{F}} \widehat{A}$ with

> $\omega((a_1, k_1), (a_2, k_2), (a_3, k_3)) := \widehat{F}(k_1, k_2)(a_3) \epsilon(k_1, k_2, k_3)$ $\widehat{\omega}((k_1, \rho_1), (k_2, \rho_2), (k_3, \rho_3)) := \epsilon(k_1, k_2, k_3) \rho_1(F(k_2, k_3)).$

Hu and Wan 2020 have shown that the following map is an isomorphism of quasi-hopf, quasi-triagular Hopf algebras:

$$egin{aligned} D^{\omega}(G) &\stackrel{\cong}{ o} D^{\widehat{\omega}}(\widehat{G}) \ (m{a}:m{x}) \otimes \delta_{(m{b}:m{y})} \mapsto &rac{1}{|m{A}|} \sum_{
ho, \eta \in \widehat{m{A}}}
ho(m{a}) \eta(m{b})^{-1} \delta_{(m{x}m{y}m{x}^{-}1:
ho)} \otimes (m{x}:\eta) \end{aligned}$$

Ganeralization to continuous groups? What is the generalization of $Vec^{\omega}(G)$ to continuous groups?

Related to the question:

What does Chern-Simons theory assign to a point? But, not quite...

For *G* a compact, connected Lie group we have (Reshetikhin-Turaev):

$$egin{aligned} & \mathcal{F}: \operatorname{Bord}_{\langle 3,2,1
angle} o \operatorname{Cat}_{\mathbb{C}} \ & \mathcal{F}(\mathcal{S}^1) \mapsto & \mathcal{Rep}(^k LG) \end{aligned}$$

 $Rep(^{k}LG)$ is the category of positive energy representations of the Loop Group LG at level $k \in H^{4}(BG, \mathbb{Z})$.

Idea of generalization to continuous groups

Joint work with:

J. Blanco (Ph.D. student) and K. Waldorf (Greifswald).

Extract the information of $\operatorname{Vec}^{\omega}(G)$ and its module categories and set it up in the 2-category of sets with U(1)[1] structure.

$\mathbb{C}-categories$	U(1)[1]-bundles over Sets	
Pointed fusion category	monoid object over G	
$\operatorname{Vec}^{\omega}(\mathrm{G})$	$\omega \in Z^3(G,U(1))$	
Module category	Representation	

2-category of geometrical U(1)-Gerbes

U(1)-Gerbes over manifolds. Objects:

 $U(1)[1] \rightarrow P \rightarrow M$

Morita equivalence classes of extensions as groupoids

+ morphisms, + 2-morphisms...

Monoid objects, representations of these monoid objects on U(1)-gerbes, endomorphism category of a representation ...

Very difficult. Instead use a homological/topological model.

Segal-Mitchison cohomology [1970]

Coefficients:

Compactly generated and locally contractible Hausdorff topological abelian groups.

$$A \hookrightarrow EA \longrightarrow BA$$

is a short exact sequence of groups in this category.

Any group A may be resolved by contractible groups:

$$A \hookrightarrow EA \xrightarrow{\partial_0} EBA \xrightarrow{\partial_1} EB^2A \xrightarrow{\partial_2} EB^3A \xrightarrow{\partial_3} \cdots$$

SM-cohomology of spaces

Let *X* be a paracompact space. Consider the complex

$$C^m(X,\underline{A}) := \operatorname{Map}(X, EB^mA), \ \partial.$$

Segal-Mitchison cohomology of *X*:

$$H^*(X,\underline{A}) = H^*(C^*(X,\underline{A}),\partial).$$

Properties. Cocycles: $Z^m(X, \underline{A}) \cong Map(X, B^m A)$

$$H^{m}(X,\underline{A}) = \begin{cases} [X,B^{m}A] & m > 0\\ Map(X,A) & m = 0 \end{cases}$$

SM cohomology of simplicial spaces

Let X_{\bullet} be a paracompact simplicial space. Define the double complex:

$$C^{\rho,q}(X_{\bullet},\underline{A}) := \operatorname{Map}(X_{\rho}, EB^{q}A)$$

and consider the total complex

$$C^*(X_{\bullet},\underline{A}) := \operatorname{Tot}(C^{*,*}(X_{\bullet},\underline{A})).$$

Segal-Mitchison cohomology of X_{\bullet} :

$$H^*(X_{\bullet},\underline{A}) = H^*(C^*(X_{\bullet},\underline{A}), \partial \pm \delta).$$

SM cohomology of topological groups

Let G be paracompact and compactly generated topological group. Let G_{\bullet} be its simplicial space (BG).

Definition The Segal-Mitchison cohomology of *G* with coefficients in *A* is $H^*(G_{\bullet}, \underline{A})$.

- $H^1(G_{\bullet}, \underline{A}) \cong \operatorname{Hom}(G, A)$. (Segal)
- $H^2(G_{\bullet}, \underline{A}) \cong \text{Ext}(G, A)$; A-central extensions of G. (Segal)
- $H^3(G_{\bullet}, \underline{A}) \cong \text{Ext}(G[0], A[1])$; 2-group A[1]-central extensions of G[0]. (Schommer-Pries, Breen, Rousseau)

SM cohomology. Further properties For *G* discrete or *A* contractible:

$$H^*(G_{\bullet},\underline{A})\cong H^*_{cont}(G,A).$$

For *A* discrete:

$$H^*(G_{\bullet},\underline{A})\cong H^*(BG,A).$$

Lyndon-Hochschild-Serre spectral sequence.

$$S \hookrightarrow G \to K$$

LHS spectral sequence abuts to $H^*(G_{\bullet}, \underline{A})$ and whose second page is:

$$E_2^{p,q} \cong H^p(K_{\bullet}, \underline{H^q(S_{\bullet}, \underline{A})}).$$

Segal-Mitchison A-gerbes

Objects: (M, α) , with *M* paracompact and locally compact space and

$$\alpha \in Z^2(M,\underline{A}) \cong \operatorname{Map}(M,B^2A)$$

Morphisms:

$$(\boldsymbol{M}, \alpha) \stackrel{(\boldsymbol{F}, \boldsymbol{c})}{\longrightarrow} (\boldsymbol{N}, \beta)$$

for F; $M \to N$ and $c \in C^1(M, \underline{A})$ with $\alpha - F^*\beta = \partial c$. **2-Morphisms:**

$$(F, c_1) \stackrel{e}{\Longrightarrow} (F, c_2)$$

for $e \in C^0(M, \underline{A})$ such that $\partial e = c_2 - c_1$.

Multiplicative Segal-Mitchison *A*-gerbes Monoidal structure:

$$(\boldsymbol{M}, \alpha) \times (\boldsymbol{N}, \beta) := (\boldsymbol{M} \times \boldsymbol{N}, \pi_{\boldsymbol{M}}^* \alpha + \pi_{\boldsymbol{N}}^* \beta)$$

with π_M and π_N the projections on *M* and *N* respectively.

Definition: A multiplicative SM *A*-gerbe $\langle M, \omega \rangle$ is a monoid object in SM *A*-gerbes.

Multiplicative SM *A*-gerbes over the monoid *M*

$$\uparrow$$
elements $\omega \in Z^3(M_{\bullet}, \underline{A})$

Representations of Multiplicative SM A-gerbes Objects: (N, β) , with *M* acting on *N* and $\beta \in Z^2((N \rtimes M)_{\bullet}, \underline{A})$ such that

$$d_{N\rtimes M}\beta=\pi^*\omega$$

where $\pi : (N \rtimes M)_{\bullet} \to M_{\bullet}$ is the projection. **Morphisms:**

$$(\boldsymbol{N},\beta) \stackrel{(\boldsymbol{F},\gamma)}{\longrightarrow} (\boldsymbol{N}',\beta')$$

for *M*-equivariant $F : N \to N'$ and $\gamma \in C^1((N \rtimes M)_{\bullet}, \underline{A})$ with $\beta - F^*\beta' = d_{N \rtimes M}\gamma$. **2-Morphisms:**

$$(F, \gamma_1) \stackrel{\nu}{\Longrightarrow} (F, \gamma_2)$$

for $\nu \in C^0((N \rtimes M)_{\bullet}, \underline{A})$ such that $d_{N \rtimes M} \nu = \gamma_2 - \gamma_1$.

Endomorphisms of Representations The monoidal category of endomorphisms

 $\operatorname{End}_{\langle \pmb{M},\omega\rangle}(\pmb{N},\beta)$

could be understood as a crossed-module (2-group)

$$C^{0}((N \rtimes M)_{ullet}, \underline{A})
ightarrow \mathrm{End}^{0}_{\langle M, \omega
angle}(N, eta)$$

with

$$\pi_1 = \operatorname{Map}(N, A)^M$$
 and $\pi_0 = \pi_0(\operatorname{End}^0_{\langle M, \omega \rangle}(N, \beta)).$

$$H^1((N \rtimes M)_{\bullet}, \underline{A}) \to \pi_0(\operatorname{End}^0_{\langle M, \omega \rangle}(N, \beta)) \to \operatorname{End}_M(N, [\beta]).$$

Jote: Here we need that *M* acts on *N* transitively.

Conditions for duality; A = U(1) $\langle G, \omega \rangle$ multiplicative SM U(1)-gerbe. S abelian and normal subgroup of G;

$$S \longrightarrow G \longrightarrow K$$

 $[\omega] \in \Omega(G, S) = \operatorname{Ker}(\operatorname{Ker}(H^3(G_{\bullet}, \underline{U(1)}) \to E_{\infty}^{0,3}) \to E_{\infty}^{1,2})$

Choice	Reason
$S \subset G$ abelian	$\widehat{\widehat{oldsymbol{S}}}\cong oldsymbol{S}$
$[\omega] _{\mathcal{S}} = 0$ in $H^3(S_{\bullet}, U(1))$	(\mathbf{K}, β) is a $\langle \mathbf{G}, \omega \rangle$ -rep.
$S \lhd G ightarrow K$ normal	$\operatorname{Hom}_{\boldsymbol{G}}(\boldsymbol{K},\boldsymbol{K})=\boldsymbol{K}$
$[\omega] \mapsto 0 \text{ in } E^{1,2}_{\infty}(LHS)$	Dual group surjects to K

Main result: Duality construction.

Consider the central extension of loc. contractible, compactly gen. and paracompact groups with *S* locally compact

$$S \longrightarrow G \longrightarrow K$$

Take $[\omega] \in \Omega(G, S)$ and (K, β) as before. **Theorem** (Blanco-U-Waldorf-2020)

$$U(1)[1] \longrightarrow \operatorname{End}_{\langle G, \omega \rangle}(K, \beta) \longrightarrow \widehat{G}[0]$$

is an extension of 2-groups with

$$\widehat{S} \longrightarrow \widehat{G} \longrightarrow K$$

and whose extension class is $[\widehat{\alpha}_{(\mathcal{K},\beta)}] \in H^3(\widehat{G}_{\bullet}, U(1))$.

Pontrjagin duality of multiplicative gerbes

Denote the multiplicative gerbes $\langle G, \omega \rangle$ and $\langle \widehat{G}, \widehat{\omega} \rangle$ **Pontrjagin** dual.

Examples

- *S* loc. compact abelian, $\langle S, 0 \rangle \leftrightarrow \langle \widehat{S}, 0 \rangle$
- $SU(2) \stackrel{\pi}{
 ightarrow} SO(3), S = \mathbb{Z}/2, \,
 ho \in H^1(\mathbb{Z}/2, U(1))$

 $\langle \textit{SU}(2), 4\textit{kc}_2
angle \leftrightarrow \langle \textit{SO}(3) imes \mathbb{Z}/2, \overline{\textit{kp}_1 + \omega_2
ho}
angle$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

$$- \mathbb{R}^3, \mathcal{H} = \left\{ \begin{pmatrix} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix} : a, b, c \in \mathbb{R} \right\}, \alpha(\mathbf{r}, \mathbf{s}, \mathbf{t}) = e^{2\pi i r_1 s_2 t_3}$$
$$\boxed{\langle \mathbb{R}^3, \alpha \rangle \leftrightarrow \langle \mathcal{H}, \mathbf{0} \rangle}$$

- etcetera.

"Strictification" and center

Let the center of the monoidal category C be:

$$\mathcal{Z}(\mathcal{C}) = \operatorname{End}_{\mathcal{C}-\mathcal{C}}(\mathcal{C})$$
.

Theorem: (Blanco-U-Waldorf) Pontrjagin dual multiplicative gerbes $\langle G, \omega \rangle$ and $\langle \widehat{G}, \widehat{\omega} \rangle$ have equivalent centers

$$\mathcal{Z}\langle \boldsymbol{G},\omega
angle\simeq\mathcal{Z}\langle\widehat{\boldsymbol{G}},\widehat{\omega}
angle$$

What about representations? The information encoded in $\mathcal{Z}\langle G, \omega \rangle$ is precisely the information required to define FHT K-theory

 $^{\tau(\omega)}K_G(G).$

But, we still do not know how to represent $\mathcal{Z}\langle G, \omega \rangle$ in vector spaces.

If we had such construction, we expect

$$\pi_0$$
 ("Rep"($\mathcal{Z}\langle G, \omega \rangle$)) $\cong {}^{\tau(\omega)} \mathcal{K}_G(G)$

and therefore we would expect that Pontrjagin dual multiplicative gerbes induce isomorphic Verlinde algebras....

Conclusions

We have defined (cohomological) Segal-Michison gerbes.

In this category we are able to define Pontrjagin dual multiplicative gerbes (this duality is also known as **Electric-magnetic duality**).

We show that Pontrjagin dual multiplicative gerbes have equivalent centers.

We have generalized the Twisted Drinfeld Double to topological groups.

This talk is based on the articles

- Blanco, U., Waldorf. Pontrjagin duality on multiplicative gerbes. arxiv:2012.05056
- Maya, Castaño, U. Classification of pointed fusion categories of dimension p³ up to weak Morita equivalence. J. Algebra Appl. (2021).
- Muñoz, U. Classification of pointed fusion categories of dimension 8 up to weak Morita equivalence. Comm. Algebra (2018).
- U. On the classification of pointed fusion categories up to weak Morita equivalence. Pacific J. Math. (2017).

THANKS!

<ロ> <0</p>