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Quantum groups

They could be thought as "deformations" of classical groups.

They should be taken as the

"Symmetry groups"

Include: Hopf algebras and their generalizations.



Yang-Baxter equation

Condition for integrability of 1D and 2D quantum systems.

Quantum integrable group –> Quasi-triangular Hopf Algebra



Drinfeld Double
H finite dimensional Hopf C-algebra.

H∗ = HomC(H,C), dual Hopf algebra.

D(H) := H ⊗ H∗ (Drinfeld Double)

The image of the identity map

HomC(H,H) ∼= H∗ ⊗ H

provides an R-matrix that satisfies the Yang-Baxter equation.
If {vi}i∈I is a basis for H, and {v i}i∈I is the dual basis for H∗:

R =
∑
i∈I

(1⊗ v i)⊗ (vi ⊗ 1) ∈ End(D(H)⊗ D(H))



Drinfeld Double of finite group D(G)
D(G) = CG ⊗ CG. Base: {g ⊗ δx |(g, x) ∈ G}.

(g ⊗ δx)(h ⊗ δy) = δx ,hyh−1(gh ⊗ δy), 1 =
∑
g∈G

1⊗ δx

∆(g ⊗ δx) =
∑
ab=x

(g ⊗ δa)⊗ (g ⊗ δb), ε(g ⊗ δx) = δx ,1

S(g ⊗ δx) = g−1 ⊗ δg−1x−1g

R =
∑

x ,y∈G

(1⊗ δx)⊗ (x ⊗ δy)



Twisted Drinfeld Double of finite group Dω(G)
ω ∈ Z 3(G,U(1)) normalized cocycle. Define:

βx(g,h) =
ω(g,h, x)ω(ghxh−1g−1,g,h)

ω(g,hxh−1,h)

µg(x , y) =
ω(gxg−1,gyg−1,g)ω(g, x , y)

ω(gxg−1,g, y)

(g ⊗ δx)(h ⊗ δy) = δx ,hyh−1βy(g,h)(gh ⊗ δy), 1 =
∑
g∈G

e ⊗ δx

∆(g ⊗ δx) =
∑
ab=x

µg(a,b)(g ⊗ δa)⊗ (g ⊗ δb), ε(g ⊗ δx) = δx ,1



Twisted Drinfeld Double of finite group Dω(G)

S(g ⊗ δx) =
1

βx−1(g−1,g)µg(x , x−1)
(g−1 ⊗ δg−1x−1g)

R =
∑

x ,y∈G

(1⊗ δx)⊗ (x ⊗ δy)

Φ =
∑

x ,y ,z∈G

ω(x , y , z)−1(1⊗ δx)⊗ (1⊗ δy)⊗ (1⊗ δz)

Note: (ω, β, µ) define a cocycle in Z 3(G n G,U(1)) via the
pullback of the multiplication map

G n G→ G, (g, x) 7→ gx



Representations of Dω(G)
Category of representations Rep(Dω(G)) of the Twisted
Drinfeld Double Dω(G) becomes a Modular Tensor Category.

Modular Tensor Category: non-degenerate braided fusion
category with a choice of spherical structure.

Extended Chern-Simons Field theory (Reshetikhin-Turaev,
Freed):

F : Bord〈3,2,1〉 →CatC
F (S1) 7→Rep(Dω(G))



Twisted equivariant K-theory

The isomorphism classes of representations

π0(Rep(Dω(G)))

could be interpreted as the G-Twisted equivariant K-theory
groups of G (Freed-Hopkins-Teleman, Willerton,...)

τ(ω)KG(G) ∼=
⊕

(x)∈Conj(G)

βx R(CG(x))

with "pull-push" product structure.



Pointed fusion category Vecω(G)

The finite tensor category Vecω(G) is a pointed fusion
category, i.e. all its simple objects are invertible.

Objects: G-graded vector spaces V = ⊕g∈GVg.

Monoidal structure: (V ⊗W )k =
⊕

hg=k Vh ⊗Wg.

Associativity constraint: (Vh ⊗Wg)⊗ Zk
ω(h,g,k)−→ Vh ⊗ (Wg ⊗ Zk)



2-Category of module categories over Vecω(G)

A module categoryM over the tensor category C consist of a
functor

M⊗C →M
and functorial associativity

µM,X ,Y : M ⊗ (X ⊗ Y )
∼→ (M ⊗ X )⊗ Y

satisfying the pentagon axiom, + more structures.

Idecomposable modules: M(A\G, µ) with δGµ = π∗ω.



Dual category of C = Vecω(G)

ForM an idecomposable module category over Vecω(G), the
dual category is:

C∗M = EndC(M)

For C andM semisimple, C∗M is semisimple and

(C∗M)∗M
∼= C



(Drinfeld) Center of monoidal category

Consider C as a module category over C ⊗ Cop. The center of C
is:

Z(C) = EndC⊗Cop(C)

For C a fusion category, its center becomes a Braided Fusion
Category. Moreover,

Z(Vecω(G)) ∼= Rep(Dω(G))

as Braided Fusion Categories.



Morita equivalence
Two fusion categories C and D are called Morita equivalent if
there exists an idecomposable module category over C such
that

C∗M ∼= D

Morita equivalent fusion categories C and D have equivalent
categories of module categories. Moreover

Z(C) ∼= Z(D)

Theorem (Etingof-Nikshish-Ostrik)
Fusion categories C and D are Morita equivalent if and only if
Z(C) and Z(D) are equivalent as Braided Fusion Categories.



Since Rep(Dω(G)) ∼= Z(Vecω(G))

Therefore:

Vecω(G) 'Morita Vecω̃(G̃) ↔ Rep(Dω(G)) ∼= Rep(Dω̃(G̃))

Morita equivalent pointed fusion categories determine
equivalent Chern Simons Extended Field theories.

So, when are Vecω(G) and Vecω̂(Ĝ) Morita equivalent?



Vecω(G) 'Morita Vecω̂(Ĝ)
Theorem [Uribe 2016]:

Vecω(G) and Vecω̂(Ĝ) are Morita equivalent, if and only if: -

φ : G ∼= A oF K with A abelian and F ∈ Z 2(K ,A).

- φ̂ : Ĝ ∼= K nF̂ Â with Â = Hom(A,U(1)) and F̂ ∈ Z 2(K , Â).

- There exists ε : K 3 → U(1) such that δK ε = F̂ ∧ F

- [φ∗η] = [ω] and [φ̂∗η̂] = [ω̂] with

η((a1, k1), (a2, k2), (a3, k3)) :=F̂ (k1, k2)(a3) ε(k1, k2, k3)

η̂((k1, ρ1), (k2, ρ2), (k3, ρ3)) :=ε(k1, k2, k3) ρ1(F (k2, k3))



Reminiscent of T-duality

Vecω(G) Vecω̂(Ĝ)

A

$$

A× Â

|| ""

Â

zz
G

F ""

Ĝ

F̂||
ω = F̂ · ε K ω̂ = F · ε



Morita equivalence classes for |G| = 4

Z/2× Z/2 Z/4
{0}

orb(x4)
orb(x4 + x2y2 + y4)

orb(x2y2) {0}
{u2}
{2u2}
{3u2}

Vecx2y2
(Z/2× Z/2) 'Morita Vec(Z/4)



Morita equivalence classes for |G| = 8
Together with student Munõz.

(Z/2)3 Z/4× Z/2 Z/8 D8 Q8

orb(x2y2) {0}

orb(x4+y2z2) {v2}

orb(x2yz+xy2z+xyz2) {0}

orb(x4+x2yz+xy2z+xyz2) {α+β,β} {0}

orb(x4+x2yz+xy2z+xyz2+y2z2) {α}

orb(x2yz+xy2z+xyz2+x2y2+x2z2+y2z2) {4t}

orb(uv) {0}

orb(uv+u2) {4s2}.

Case |G| = p3 was done together with Maya and Mejia.



Isomorphism of Twisted Drinfeld Doubles
For G = A oF K and Ĝ = K nF̂ Â with

ω((a1, k1), (a2, k2), (a3, k3)) :=F̂ (k1, k2)(a3) ε(k1, k2, k3)

ω̂((k1, ρ1), (k2, ρ2), (k3, ρ3)) :=ε(k1, k2, k3) ρ1(F (k2, k3)).

Hu and Wan 2020 have shown that the following map is an
isomorphism of quasi-hopf, quasi-triagular Hopf algebras:

Dω(G)
∼=→Dω̂(Ĝ)

(a : x)⊗ δ(b:y) 7→
1
|A|

∑
ρ,η∈Â

ρ(a)η(b)−1δ(xyx−1:ρ) ⊗ (x : η)



Ganeralization to continuous groups?
What is the generalization of Vecω(G) to continuous groups?

Related to the question:
What does Chern-Simons theory assign to a point?
But, not quite...

For G a compact, connected Lie group we have
(Reshetikhin-Turaev):

F : Bord〈3,2,1〉 →CatC
F (S1) 7→Rep(kLG)

Rep(kLG) is the category of positive energy representations of
the Loop Group LG at level k ∈ H4(BG,Z).



Idea of generalization to continuous groups
Joint work with:
J. Blanco (Ph.D. student) and K. Waldorf (Greifswald).

Extract the information of Vecω(G) and its module categories
and set it up in the 2-category of sets with U(1)[1] structure.

C− categories U(1)[1]-bundles over Sets

Pointed fusion category monoid object over G
Vecω(G) ω ∈ Z 3(G,U(1))

Module category Representation



2-category of geometrical U(1)-Gerbes
U(1)-Gerbes over manifolds. Objects:

U(1)[1]→ P → M

Morita equivalence classes of extensions as groupoids

+ morphisms, + 2-morphisms...

Monoid objects, representations of these monoid objects on
U(1)-gerbes, endomorphism category of a representation ...

Very difficult. Instead use a homological/topological model.



Segal-Mitchison cohomology [1970]

Coefficients:
Compactly generated and locally contractible Hausdorff
topological abelian groups.

A ↪→ EA −→ BA

is a short exact sequence of groups in this category.

Any group A may be resolved by contractible groups:

A ↪→ EA ∂0−→ EBA ∂1−→ EB2A ∂2−→ EB3A ∂3−→ · · · .



SM-cohomology of spaces
Let X be a paracompact space. Consider the complex

Cm(X ,A) := Map(X ,EBmA), ∂.

Segal-Mitchison cohomology of X :

H∗(X ,A) = H∗(C∗(X ,A), ∂).

Properties. Cocycles: Z m(X ,A) ∼= Map(X ,BmA)

Hm(X ,A) =

{
[X ,BmA] m > 0

Map(X ,A) m = 0



SM cohomology of simplicial spaces

Let X• be a paracompact simplicial space. Define the double
complex:

Cp,q(X•,A) := Map(Xp,EBqA)

and consider the total complex

C∗(X•,A) := Tot(C∗,∗(X•,A)).

Segal-Mitchison cohomology of X•:

H∗(X•,A) = H∗(C∗(X•,A), ∂ ± δ).



SM cohomology of topological groups

Let G be paracompact and compactly generated topological
group. Let G• be its simplicial space (BG).

Definition The Segal-Mitchison cohomology of G with
coefficients in A is H∗(G•,A).

- H1(G•,A) ∼= Hom(G,A). (Segal)

- H2(G•,A) ∼= Ext(G,A); A-central extensions of G. (Segal)

- H3(G•,A) ∼= Ext(G[0],A[1]); 2-group A[1]-central extensions
of G[0]. (Schommer-Pries, Breen, Rousseau)



SM cohomology. Further properties
For G discrete or A contractible:

H∗(G•,A) ∼= H∗cont(G,A).

For A discrete:
H∗(G•,A) ∼= H∗(BG,A).

Lyndon-Hochschild-Serre spectral sequence.

S ↪→ G→ K

LHS spectral sequence abuts to H∗(G•,A) and whose second
page is:

Ep,q
2
∼= Hp(K•,Hq(S•,A)).



Segal-Mitchison A-gerbes
Objects: (M, α), with M paracompact and locally compact
space and

α ∈ Z 2(M,A) ∼= Map(M,B2A)

Morphisms:

(M, α)
(F ,c)−→ (N, β)

for F ; M → N and c ∈ C1(M,A) with α− F ∗β = ∂c.
2-Morphisms:

(F , c1)
e

=⇒ (F , c2)

for e ∈ C0(M,A) such that ∂e = c2 − c1.



Multiplicative Segal-Mitchison A-gerbes
Monoidal structure:

(M, α)× (N, β) := (M × N, π∗Mα + π∗Nβ)

with πM and πN the projections on M and N respectively.

Definition: A multiplicative SM A-gerbe 〈M, ω〉 is a monoid
object in SM A-gerbes.

Multiplicative SM A-gerbes over the monoid M
l

elements ω ∈ Z 3(M•,A)



Representations of Multiplicative SM A-gerbes
Objects: (N, β), with M acting on N and β ∈ Z 2((N o M)•,A)
such that

dNoMβ = π∗ω

where π : (N o M)• → M• is the projection.
Morphisms:

(N, β)
(F ,γ)−→ (N ′, β′)

for M-equivariant F : N → N ′ and γ ∈ C1((N o M)•,A) with
β − F ∗β′ = dNoMγ.
2-Morphisms:

(F , γ1)
ν

=⇒ (F , γ2)

for ν ∈ C0((N o M)•,A) such that dNoMν = γ2 − γ1.



Endomorphisms of Representations
The monoidal category of endomorphisms

End〈M,ω〉(N, β)

could be understood as a crossed-module (2-group)

C0((N o M)•,A)→ End0
〈M,ω〉(N, β)

with

π1 = Map(N,A)M and π0 = π0(End0
〈M,ω〉(N, β)).

H1((N o M)•,A)→ π0(End0
〈M,ω〉(N, β))→ EndM(N, [β]).

Note: Here we need that M acts on N transitively.



Conditions for duality; A = U(1)
〈G, ω〉 multiplicative SM U(1)-gerbe.
S abelian and normal subgroup of G;

S −→ G −→ K

[ω] ∈ Ω(G,S) = Ker(Ker(H3(G•,U(1))→ E0,3
∞ )→ E1,2

∞ )

Choice Reason

S ⊂ G abelian ̂̂S ∼= S
[ω]|S = 0 in H3(S•,U(1)) (K , β) is a 〈G, ω〉-rep.

S � G→ K normal HomG(K ,K ) = K
[ω] 7→ 0 in E1,2

∞ (LHS) Dual group surjects to K



Main result: Duality construction.
Consider the central extension of loc. contractible, compactly
gen. and paracompact groups with S locally compact

S −→ G −→ K

Take [ω] ∈ Ω(G,S) and (K , β) as before.
Theorem (Blanco-U-Waldorf-2020)

U(1)[1] −→ End〈G,ω〉(K , β) −→ Ĝ[0]

is an extension of 2-groups with

Ŝ −→ Ĝ −→ K

and whose extension class is [α̂(K ,β)] ∈ H3(Ĝ•,U(1)).



Pontrjagin duality of multiplicative gerbes

Denote the multiplicative gerbes 〈G, ω〉 and 〈Ĝ, ω̂〉 Pontrjagin
dual.

〈G, ω〉 ↔ 〈Ĝ, ω̂〉

S

$$

S × Ŝ

|| ""

Ŝ

{{
G

F ""

Ĝ

F̂||
ω ' F̂ · ε K ω̂ ' F · ε



Examples
- S loc. compact abelian, 〈S,0〉 ↔ 〈Ŝ,0〉

- SU(2)
π→ SO(3), S = Z/2, ρ ∈ H1(Z/2,U(1))

〈SU(2),4kc2〉 ↔ 〈SO(3)× Z/2, kp1 + ω2ρ〉

- R3, H =


1 a c

0 1 b
0 0 1

 : a,b, c ∈ R

, α(r,s, t) = e2πir1s2t3

〈R3, α〉 ↔ 〈H,0〉

- etcetera.



“Strictification" and center
Mult. Gerbe 2-group

〈G, ω〉 End〈G,ω〉(G, ω)

〈Ĝ, ω̂〉 End〈G,ω〉(K , β)

Let the center of the monoidal category C be:

Z(C) = EndC−C(C) .

Theorem: (Blanco-U-Waldorf) Pontrjagin dual multiplicative
gerbes 〈G, ω〉 and 〈Ĝ, ω̂〉 have equivalent centers

Z〈G, ω〉 ' Z〈Ĝ, ω̂〉



What about representations?
The information encoded in Z〈G, ω〉 is precisely the
information required to define FHT K-theory

τ(ω)KG(G).

But, we still do not know how to represent Z〈G, ω〉 in vector
spaces.

If we had such construction, we expect

π0 (“Rep"(Z〈G, ω〉)) ∼= τ(ω)KG(G)

and therefore we would expect that Pontrjagin dual
multiplicative gerbes induce isomorphic Verlinde algebras...



Conclusions

We have defined (cohomological) Segal-Michison gerbes.

In this category we are able to define Pontrjagin dual
multiplicative gerbes (this duality is also known as
Electric-magnetic duality).

We show that Pontrjagin dual multiplicative gerbes have
equivalent centers.

We have generalized the Twisted Drinfeld Double to
topological groups.
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